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Abstract. The (2+ p)-satisfiability (SAT) problem interpolates between different classes of
complexity theory and is thought to be of basic interest in understanding the onset of typical
case complexity in random combinatorics. In this paper, a tricritical point in the phase diagram
of the random (2+ p)-SAT problem is analytically computed using the replica approach and
found to lie in the range2

5 6 p0 6 0.416. These bounds onp0 are in agreement with previous
numerical simulations and rigorous results.

1. Introduction

The satisfiability (SAT) problem [1] is the prototype of NP-complete combinatorial
decision problems arising in theoretical computer science. Such decision problems are,
by definition, the most difficult problems solvable in polynomial time by some ideal non-
deterministic algorithm [1]. In practice, however, real algorithms may drastically change
their performance depending on whether the instances of the problem are highly constrained
or not. Therefore, the worst-case classification on which complexity theory is founded does
not necessarily capture the behaviour of search algorithms in specific applications. For
example, random instances of NP-complete decision problems undergo a dramatic change
in the median time required for their solution when the instances are generated at the
boundary of a critical region in the parameter space (for an introduction to these issues,
see [2]).

A paradigm for such a behaviour is provided by the randomK-satisfiability (K-SAT)
problem. Briefly speaking, one is givenN Boolean variables and a set ofM clauses to be
satisfied simultaneously. A clause refers to a logical constraint onK Boolean variables,
randomly chosen among theN ones. For large instances (M,N →∞), K-SAT exhibits a
striking threshold phenomenon as a function of the intensive ratioα = M/N . Numerical
simulations show that the probability of finding an assignment of the Boolean variables
satisfying all clauses falls abruptly from one to zero whenα crosses a critical valueαc(K)
of the number of clauses per variable [3]. This scenario is rigorously established in the
(polynomial)K = 2 case, whereαc(2) = 1 [4]. ForK > 3, much less is known;K(> 3)-
SAT belongs to the NP-complete class, which means that running times of search algorithms
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are thought to scale exponentially inN when the problem instances are critically constrained.
Recent numerical works have provided an estimate forαc(3) ' 4.2–4.3 [3].

A statistical mechanics approach has been attempted to gain insight into theK-SAT
problem [5–7]. These studies rely on the correspondence between solutions and ground
states of diluted spin-glass-like energy-cost functions. Threshold phenomena therefore
correspond to zero temperature critical points in the phase diagram of the associated spin-
glass model. Replica symmetric (RS) theory gives the correct value of the threshold for
K = 2 but fails in predicting the criticalαc for K > 3 [6, 7]. This stems from the nature of
the transition taking place atαc, which is continuous forK = 2 and appears discontinuous
whenK > 3. In the latter case, the precise location of the critical point for the first-
order transition would require an appropriate replica symmetry-breaking (RSB) scheme.
For interacting models with finite connectivity, the latter issue is still an open problem in
many respects [8].

Recently [9], it has been suggested that the particular nature—continuous or
discontinuous—of the phase transition taking place at the threshold could be strictly
connected with the appearance of computationally hard instances, and hence to the onset of
exponential regimes in search algorithms [10]. Numerical studies on the so-called (2+ p)-
SAT problem [9] (that smoothly interpolates between 2-SAT (p = 0) and 3-SAT (p = 1) [7])
strongly support this statement. It follows that interest in the precise analytical localization
of discontinuous transitions in random SAT models goes far beyond the purely technical
aspects of the replica formalism.

In this paper we present the analytical calculation of the tricritical pointp0 of the (2+p)-
SAT model, separating second-order phase transitions (06 p < p0) from first-order ones
(p0 < p 6 1). In section 2, we recall the definition of the (2+p)-SAT model and the main
steps of the statistical physics analysis are exposed in section 3. In section 4, we study the
critical region and establish the self-consistent equations fulfilled by the order parameter at
threshold. We analyse these equations and show that2

5 6 p0 6 0.416. In conclusion, we
underline the agreement between our result and another recent mathematical study of the
(2+ p)-SAT model.

2. Presentation of the (2+ p)-SAT model

The (2+p)-SAT model is a mixed version of 2-SAT and 3-SAT including(1−p)M (resp.
pM) clauses constraining two (resp. three) Boolean variables [7].

To start with, we consider a set ofN Boolean variables{xi = 0, 1}i=1,...,N . We first
randomly choose two among theN possible indicesi and then, for each of them, a literalzi
that is the correspondingxi or its negationx̄i with equal probabilities one half. A clauseC
is the logical OR of the two previously chosen literals: that isC will be true (or satisfied)
if and only if at least one literal is true. Next, we repeat this process to obtain(1− p)M
independently chosen clauses{C`}`=1,...,(1−p)M and ask for all of them to be true at the same
time: i.e. we take the logical AND of theM clauses thus obtaining a Boolean expression
in the so-called conjunctive normal form (CNF). The resulting 2-CNF formulaF2 may be
written as

F2 =
(1−p)M∧
`=1

C` =
(1−p)M∧
`=1

( 2∨
i=1

z
(`)
i

)
(1)

where
∧

and
∨

stand for the logical AND and OR operations respectively.
Then, using the above prescription, we generate a 3-CNF, hereafter calledF3 including

pM clauses of length 3. The resulting Boolean formulaF that we shall analyse, reads
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F = F2∧ F3. A logical assignment of the{xi}’s satisfying all clauses, that is evaluatingF
to be true, is called a solution of the satisfiability problem. If no such assignment exists,
F is said to be unsatisfiable. It is worth noting that as far as the complexity classification
of this problem is concerned, for anyp > 0 any instance of the model contains a 3-CNF
subformula, therefore proving that the problem itself belongs to the NP-complete class.

This model has the usual threshold behaviour ofK-SAT instances [9, 11] at a critical
ratio M/N = αc(p), with αc(0) = 1 andαc(1) = α3sat

c ' 4.2–4.3. The critical ratio is
obviously bounded from above byαc(p) 6 1/(1− p), obtained from the requirement that
F2 is almost certainly satisfiable. We shall show in the following that

αc(p) = 1

1− p (06 p < p0) (2)

i.e. that the upper bound is reached whenp is smaller than a valuep0 lying in the range

0.46 p0 6 0.416. (3)

Most remarkably, since an earlier presentation of our result [9], a rigorous proof of the
equality (2) has been derived forp 6 2

5 based on an analysis of the so-called unit clause
algorithm [11].

3. Statistical mechanics analysis

3.1. The energy-cost function

The above mixed random SAT problem can be mapped onto a diluted spin energy-cost
function upon introducing the spin variables,Si = 1 if the Boolean variablexi is true,
Si = −1 if xi is false, and by taking into account the clauses through anM × N random
matrixC whereC`,i = −1 (respectively+1) if clauseCl containsx̄i (resp.xi), 0 otherwise.
It can easily be checked that

∑N
i=1C`iSi equals the number of wrong literals in clause`.

Then the energy-cost function

E[C, S] =
(1−p)M∑
`=1

δ

[ N∑
i=1

C`iSi;−2

]
+

M∑
`=(1−p)M+1

δ

[ N∑
i=1

C`iSi;−3

]
(4)

whereδ[. ; .] denotes the Kronecker function, counts the number of violated clauses in the
CNF Boolean expressionF for logical assignmentS. The ground state (GS) energy of the
cost function (4), i.e. its minimum overS at fixedC, encodes for the existence of satisfying
assignments (zero violated clauses,EGS= 0) or, if not, for the minimum number (EGS> 0)
of violated clauses.

It is worth noting that, in addition to usual two-spin interactions that give rise to
continuous phase transitions [13], the energy (4) involves three-spin interactions due to
the presence of three-clauses. The latter can generate discontinuous phase transitions at
sufficiently high concentration, i.e. for largep [14].

We now go on to calculate the value of the tricritical pointp0 separating the second-order
phase transitions from the first-order ones on the threshold lineαc(p).

3.2. The average over the disorder

Resorting to the replica method for diluted spin glasses and following [7], one proceeds
by computing the model ‘free-energy’ density at inverse temperatureβ, averaged over the
clauses distributionF(β) = − 1

βN
lnZ[C] whereZ[C] is the partition function. The overbar



9212 R Monasson and R Zecchina

denotes the average over the random clauses matricesC and is performed using the replica
trick lnZ = limn→0(Zn − 1)/n, starting from integer values ofn. The typical properties
of the ground state, i.e. the internal energy and the entropy, are recovered in theβ → ∞
limit.

To express thenth moment of the partition function, it is convenient to use the
multilevel gas formalism proposed in [8]. The replicated theory is equivalent to a gas
of N particles occupying 2n levels labelled byn binary component vectorsσ = (σ1 =
±1, σ2 = ±1, . . . , σn = ±1). Calling ρ(σ) the population, that is the fraction of particles
on levelσ, the energy of the gas per particle reads after some simple algebra (detailed in
the appendix),

Egas[ρ] = −α
β
(1− p) ln

[∑
σ,τ

ρ(σ)ρ(τ ) exp

(
− β

n∑
a=1

δ[σa; 1]δ[τa; 1]

)]

−α
β
p ln

[ ∑
σ,τ ,ω

ρ(σ)ρ(τ )ρ(ω) exp

(
− β

n∑
a=1

δ[σa; 1]δ[τa; 1]δ[ωa; 1]

)]
(5)

with the symmetry constraintρ(σ) = ρ(−σ). The stationary distributionρs of the level
populationsρ in the thermodynamic limitN → ∞ is obtained by balancing the above
energetic interactions and the mixing entropy (per particle) [8]

Sgas[ρ] = −
∑
σ

ρ(σ) ln ρ(σ) (6)

thus minimizingEgas[ρ] − Sgas[ρ]/β. The dominant contribution toZn is then given by

Zn ' exp

(
−βN

[
Egas[ρs ] − 1

β
Sgas[ρs ]

])
. (7)

The determination of the saddle pointρs(σ) is very difficult in general but can be performed
under some simplifying assumptions.

3.3. The replica symmetric theory

In the RS hypothesis, one looks for a stationary distributionρs(σ1, σ2, . . . , σn) invariant
under any permutation of then replicas. Therefore,ρs(σ) depends on its argument through∑n

a=1 σa only. This allows the introduction of a generating functionR(z),

ρs(σ1, σ2, . . . , σn) =
∫ ∞
−∞

dz R(z)
n∏
a=1

(
eβzσa/2

eβz/2+ e−βz/2

)
(8)

which becomes the Laplace transform of the populationsρs in the limit n → 0 [7]. Note
that, since the sum of the fractionsρ equals one,R(z) is normalized to unity.

The minimization condition overρs yields a self-consistent equation for the function
R(z). In the limits of interestn→ 0 andβ →∞, this equation reads (see [7]),

R(z) =
∫ ∞
−∞

du

2π
cos(uz) exp

{
− α(1− p)+ 2α(1− p)

∫ ∞
0

dz1R(z1) cos(umin(1, z1))

− 3
4αp + 3αp

∫ ∞
0

dz1 dz2R(z1)R(z2) cos(umin(1, z1, z2))

}
. (9)

The interpretation ofR(z) is transparent within the cavity approach: it is the probability
distribution of the effective fieldsz seen by the spins [7]. In other words,R(z) accounts for
the histogramP(〈〈S〉〉) of the thermal average values of the variables through the relation
〈〈Si〉〉 = tanh(βzi/2).
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4. Analysis of the critical region

4.1. The order parameter at threshold

When α < αc(p), that is for weakly constrained formulae, the stable solution of (9) is
R(z) = δ(z) because the number of fully constrained spins in the ground state is not
extensive inN [7, 9]. Let us now fixp to a small value. As discussed in the previous
section, the SAT/UNSAT transition is thought to be of second order. We thus consider some
small (and even) fluctuationsµ(z) = R(z) − δ(z) around the solution of the SAT phase.
From (9), we find

µ(z) =
∫ ∞

0
dz1 L̃(z, z1)µ(z1)+

∫ ∞
0

dz1 dz2 M̃(z, z1, z2)µ(z1)µ(z2)+O(µ3) (10)

for all z where

L̃(z, z1) = α(1− p)
∑
σ1=±1

δ(z− σ1 min(1, z1))

M̃(z, z1, z2) = 3
2αp

∑
σ1=±1

δ(z− σ1 min(1, z1, z2))

+ 1
2α

2(1− p)2
∑

σ1,σ2=±1

δ(z− σ1 min(1, z1)− σ2 min(1, z2)).

(11)

Let us restrict toz ∈ [0; 1[†. The inspection of the linear term in (11) shows that the
threshold is given by (2). Next, we expand around the latter by posingα = αc(p) + x,
µ(z) = x η(z)+O(x2) and obtain, whenx → 0,

0= (1− p)η(z)+
∫ ∞

0
dz1 dz2M(z, z1, z2)η(z1)η(z2) (12)

where the kernel of the quadratic form reads

M(z, z1, z2) = 3p

2(1− p)
∑
σ1=±1

δ(z− σ1 min(1, z1, z2))

+ 1
2

∑
σ1,σ2=±1

δ(z− σ1 min(1, z1)− σ2 min(1, z2)). (13)

Note that the positivity of the probability distributionR imposesη(z) > 0 for z 6= 0.
Furthermore, the normalization ofR implies that∫ ∞

−∞
dz η(z) = 0. (14)

Consequently,η(z) includes a Dirac peak inz = 0 with a negative weight−η0, η0 > 0.

4.2. Discretization of the self-consistent equations

Within the iterative scheme for the RS solution discussed in [7], we can discretize the above
equation and look for an exact solution of the form

η(z) = −η0δ(z)+
∑
`6=0

η`δ

(
z− `

q

)
. (15)

† Equation (9) is indeed a self-consistent constraint onR(z) in this range only, see [7].
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In the above equation, 1/q is the resolution of the effective field which eventually goes to
zero. The self-consistent equations for the coefficients,η`’s (` = 0, 1, . . . , q − 1) are easily
obtained from (12),

(1− p)η0 = 3

4

1− 2p

1− p η
2
0 − η0

q−1∑
j=1

ηj +
q−1∑
j=1

η2
j +

( q−1∑
j=1

ηj

)2

(16)

and, for` = 1, . . . , q − 1,

(1− p)η` = η`
{
η0+ 3

2

p

1− p
[
− η0+ 2

`−1∑
j=1

ηj + η`
]}

− 1
2

`−1∑
j=1

ηjη`−j −
q−`−1∑
j=1

ηjη`+j + ηq−`
( q−1∑
j=1

ηj − 1
2η0

)
. (17)

4.3. Homogeneous equations at tricriticallity

The onset of first-order transition corresponds to the smallest value ofp for which η(z)
diverges. Let us callp0(q) the tricritical point for a resolution of the field 1/q. When
q = 1, equation (16) gives

η0 = 4(1− p)2
3(1− 2p)

(18)

leading top0(1) = 1
2. When increasingq, one gets smaller and smaller values forp0(q):

e.g. p0(2) = 0.4614, p0(3) = 0.4484, . . . . When approachingp0(q) from below, the
weights of the Dirac peaks always diverge according to

η`(p) ' �`

p0(q)− p p→ p0(q)
− (19)

as can be explicitly checked with (18) forq = 1 and` = 0. Therefore, the amplitudes�`
have to satisfy thehomogeneousversions of equations (16) and (17),

0= 3

4

1− 2p

1− p �
2
0−�0

q−1∑
j=1

�j +
q−1∑
j=1

�2
j +

( q−1∑
j=1

�j

)2

(20)

and, for` = 1, . . . , q − 1,

0= �`
{
�0+ 3

2

p

1− p
[
−�0+ 2

`−1∑
j=1

�j +�`
]}

− 1
2

`−1∑
j=1

�j�`−j −
q−`−1∑
j=1

�j�`+j +�q−`
( q−1∑
j=1

�j − 1
2�0

)
. (21)

The tricritical pointp0 is the smallest value ofp for which the quadratic forms in (20)
and (21) have a non-zero solution�`. In the above equations, we can choose�0 = 1
arbitrarily and we are left withq coupled equations forp0 and theq − 1 amplitudes�`,
` = 1, . . . , q − 1.
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Figure 1. Plot of p0(q) versusq. The broken line is the lower boundp0 = 2
5 .

4.4. Lower bound to the tricritical point

We now focus upon the self-consistent equation (20) that we rewrite as follows:

5p − 2

4(1− p)�
2
0 =

(
1

2
�0−

q−1∑
j=1

�j

)2

+
q−1∑
j=1

�2
j (22)

from which the lower bound25 6 p0 is immediately derived. Furthermore, this lower bound
can be reached if and only ifη(z) at the tricritical point vanishes outside of the interval
] − 1; 1[ and there is no Dirac distribution are present in the continous limitq →∞.

4.5. Upper bound to the tricritical point

If {�̃`} is a solution of equations (20) and (21) for a given pair of parameters(p, q = q̃),
then so also is{�2` = �̃`,�2`+1 = 0} for (p, q = 2q̃). Thus,p0(q) > p0(2q) > · · · > p0

for any finite q, defining a sequence of more and more refined upper bounds top0. We
have then obtained the numerical values ofp0(q) for q = 1, . . . ,120. It appears thatp0(q)

indeed decreases withq and equals 0.4158 forq = 120, giving a numerical upper bound
to p0.

The convergence ofp0(q) down to its limit valuep0 is very slow and seems to display
some power-law effects (see figure 1). At first sight, the numerical prediction forp0 is
close to 0.41, a value close to but higher than the lower bound2

5.

5. Conclusion

To conclude, a few observations are in order. The above results have been derived within an
iterative RS scheme allowing for more and more refined effective field resolutions. With the



9216 R Monasson and R Zecchina

simplest choice of integer fields, the value ofp0 would have been12, a wrong result which
tells us that there must exist other non-integer contibutions toR(z). The appearance of
non-integer effective fields has recently been shown to reflect the existence of RSB. Further
work will be necessary to elucidate the role of RSB effects on the structure of the solutions
(in principle, even the calculation ofp0 could be affected). The rigorous results discussed
in [11] show that the RS solution is exact at least up top < 2

5. Such probabilistic results
are based on the convergency analysis of a simple algorithm which proceeds by successive
simplifications of the Boolean formula originated by fixing at random one variable at a time.
In [11] it is shown that forα < αc(p) andp < 2

5, the above algorithm has a finite probability
of finding a satisfying assignment and hence the starting formula has to be satisfiable with
probability one in the limitN →∞. For p < 2

5 the three-clauses are ineffective even for
a rather trivial ‘dynamical process’ like the algorithm mentioned. Such a result is indeed
consistent with the idea that the nature of the phase transition taking place atαc(p) does
not change at least up top < 2

5. In the casep0 >
2
5, as suggested by the RS solution, it

would be of interest to understand how one should modify the algorithm in order to recover
the statistical mechanics result.

Let us conclude by noting that from a physical point of view, the nature of the transition
manifests itself through the appearance of a finite fraction of completely constrained
variables when crossing the threshold [7, 12]. Abovep0, this fraction discontinuously
blows up atαc. The narrow correspondence between this fact and the onset of computational
complexity shown by simulations [9] suggests that the underlying mechanisms causing the
increase of the typical computational search cost could be related to the fact that search
algorithms have to find the precise values of an O(N) number of Boolean variables through
extensive enumeration.
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Appendix. Calculation of the effective gas energy

Considern Boolean assignmentsSa, wherea = 1, . . . , n, each comprised ofN binary
spins. The replica method requires the computation of the average product of their Gibbs
weights corresponding to energy (4).

z[Sa] = exp

(
− β

n∑
a=1

E[C, Sa]

)
(A1)

factorizes over the sets of two- and three-clauses due to the absence of any correlation in
their probability distribution. Thus,

z[Sa] = (ζ2[Sa])(1−p)M(ζ3[Sa])pM. (A2)

The single-clause factors in the above formula are defined by (forK = 2, 3)

ζK [Sa] = exp

(
− β

n∑
a=1

δ

[ N∑
i=1

CiS
a
i ;−K

])
(A3)
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where the bar denotes the unbiased average over the set of 2K
(
N

K

)
vectors ofN components

Ci = 0,±1 and of squared norm equal toK. Using the identity,

δ

[ N∑
i=1

CiS
a
i ;−K

]
=

∏
i/Ci 6=0

δ[Sai ;−Ci ] (A4)

we carry out the averaging over in disorder in (A3) to obtain

ζK [Sa] = 1

2K
∑

C1,...,CK=±1

1

NK

N∑
i1,...,iK=1

exp

{
− β

n∑
a=1

K∏
`=1

δ[Sai`;−C`]
}

(A5)

to the largest order inN . Defining ρ(σ) as the fraction of spins(S1
i , . . . , S

n
i ) equal to

(σ 1, . . . , σ n) [8], we rewriteζK [Sa] = ζK [ρ] with

ζK [ρ] = 1

2K
∑

C1,...,CK=±1

∑
σ1,...,σK

ρ(−C1σ1) . . . ρ(−CKσK) exp

{
− β

n∑
a=1

K∏
`=1

δ[σa` ; 1]

}
.

(A6)

Note thatρ(σ) = ρ(−σ) due to the even distribution of the disorderC. The final expression
of the effective gas energy per particle, defined asEgas[ρ] = − logz[Sa]/βN is given in
(5).
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